
The calculation of the resistivity of liquid and amorphous transition metals via the Landauer

formula

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 1543

(http://iopscience.iop.org/0953-8984/7/8/004)

Download details:

IP Address: 171.66.16.179

The article was downloaded on 13/05/2010 at 11:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/7/8
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys.: Condenr. Matter 7 (1995) 1543-1556. Printed in the UK 

The calculation of the resistivity of liquid and amorphous 
transition metals via the Landauer formula 

RenC Kahnt 
Fachbereich Physik, Technische UniveiriC3 Chemnitz, 09009 Chemnitz, PF 964, Germany 

Received 25 May 1994. in final form 21 November 1994 

Abstract Employing the concept of elastic multiple scattering. we used the Landauer/Biittiker 
conductance formulas for calculadng resistivities of realistic stmctural models of strongly 
scattering disordered materials. Our model is based on the calculation of scattering matrices 
of supercells with about one hundred aroms which M arranged into a two-dimensional layer. 
Resistivities are obtained upon extracting the average linear dependence of the transmission 
on the layer thickness. The smoothing of the Fermi surface is included just as in the Kubc- 
Greenwood formula We applied our method in resistivity calculations of liquid and amorphous 
m i t i o n  metals. 

1. Introduction 

For many years there has been increasing interest in the theoretical description of the 
properties of liquid and amorphous transition metals (TMS). Today there exist several 
theoretical approaches for calculating electronic properties which are the foundations for an 
improved understanding of this kind of material. In recent years, first-principles calculations 
of the density of states (DOS) have been performed. These calculations are based on LKKR, 
LCAO, LMTO and multiple-scattering (MS) schemes and have to work self-consistently. Today 
systems of %lo2 atoms can be treated in that way and the results are nearly independent 
of the employed approach. The starting point for all these calculations is structure models. 
These models are generated by molecular dynamical (MD) or Monte Carlo (Mc) procedures. 
Much progress has been made in treating the particle interactions quantum mechanically. 
Unfortunately, such advanced techniques which are based on plane wave basis sets 111 
cannot be used because of the resonant d states. But H-m-TB derived effective pair 
potentials work quite reasonably [Z. 31. Systems with many more than onehnndred atoms 
have to be simulated by use of effective potentials. Alternatively, reverse Monte Carlo 
(RMC) procedures 141 can be used. The generated structure models are characterized by 
nearly the same statistical properties as structures that come from MD or MC schemes. 

The special subject of our work is the DC conductivity or resistivity of these materials. 
Most formalisms for calculating these quantities only work for weakly scattering materials 
(mean free path I f  much greater than the interatomic distance &-at) or dilute alloys. The 
most popular generalization is the extended Ziman formula. This approach does not work 
very well for amorphous and liquid TMS. Improved results were obtained upon employing 
effective valences. We believe that such approaches are not consistent, because DOS 
calculations also need a complete MS treatment to produce correct results. Until now, 
only the approaches within the linear response theory (e.g. the Kuho4reenwood formula 
[5])  are able to reproduce experimental results with a good accuracy. 
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Otherwise, methods for calculating the resistance of mesoscopic systems are under 
discussion. Aa early as 1957 the basic ideas for such calculations were published by 
Landauer [6]. He calculated the conductance of a onedimensional scatterer between ideal 
one-channel leads as a function of its reflection ( R )  and transmission ( T )  coefficients 
as G = (2e2 /h )T /R .  This is known as the onechannel Landauer formula. In 
connection with the explanation of quantum effects in mesoscopic systems, like conductance 
quantization, universal conductance fluctuations, Aharonov-Bohm effect and others this 
Landauer picture had a big revival. An alternative treatment of the same problem led to 
another one-dimensional conductance formula, the so called one-channel Biittiker formula 
G = ( 2 e 2 / h ) T .  Until now in a certain experimental situation, it has not been clear which 
formula has to be used. Furthermore, there were developed different formulas for the 
situation of many-channel leads, e.g. the many-channel Landauer [7] formula, 

and the multichannel Biittiker formula 

as generalizations of the one-channel cases. (Ri )  are the total transmission 
(reflection) probabilities into the ith channel. They can be calculated from the S matrix 
according to 

Here 

Biittiker et a1 [7] have shown that (1) is the conductance of the scatterer alone, while (2) 
includes contributions of the ideal leads, too. Nevertheless, (2) is often used to calculate 
the conductances of a bare scatterer. As yet there is some lack of knowledge of how 
the above Conductance formulas have to be applicated. This work will not attempt to 
answer this question. Our goal is rather to use such conductance formulas for calculating 
the conductivitylresistivity of realistic strongly scattering materials. Therefore, a model of 
an infinite disordered system is needed which can be used in multichannel conductance 
formulas like (l), (2). 

One way to proceed may be to put a realistic cluster model into a confinement, e.g. a 
tube. However, in this model a large part of the scatterers is situated near the wall. The 
properties of these scatterers are influenced by the wall, leading to deviations from bulk 
properties. 

Another way, ~e application of periodic boundary conditions in two dimensions, has 
the advantage that many more scatterers are situated in typical bulk surroundings. So we 
have to treat the transport perpendicular to a twodimensionally periodic slab which is not 
periodic in the third dimension. The two-dimensional basic cell has the dimensions aa and 
the layer has a thickness 1 with 1 c 1.. .2a. The situation is shown in figure 1. Upon 
adding periodicity in the third direction one gets a resistivity of zero or infinty depending 
on the band structure E(k) of the supercrystal. Our model should be better, the smaller 
the mean free path is. In 3d TM systems If X holds. Especially the case a >> &. 
should simulate a bulk material. 

This paper demonstrates the method for calculating the resistivity with the help of such 
multichannel conductance formulae. The formalism is shown in detail in [8]. 

In section 2 we give the basic equations for calculating the S matrix in a MS picture. The 
structure models and the scattering phase shifts as input of our calculations are discussed in 
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Figure 1. Two-dimensional periodic layer with a periodicity n and a thickness I .  An incident 
plane wave is scattered into outgoing waves differing by vectors of the hvo-dimensional 
recipmal lattice, We are interested in the transpart perpendicular to this layer. 

section 3. Then we show some curves which demonstrate the behaviour of our model and 
apply it to realistic materials. At the end we give a short discussion. 

2. Theory 

2.1. Baric model 

The electron scattering at a two-dimensional periodic layer can he treated in a plane wave 
basis. The plane waves 

(p:(E, k,, r)  = - 1 expik: . T k: = k, + T + Z z a ~ ,  K~ = Jm 6 
(4) 

are characterized by the energy 1 ~ 1 ’  and by the wave vector kll which is confined to the first 
Brillouin zone of the two-dimensional reciprocal lattice (lattice vectors t). (4) shows that 
there exist two kinds of wave: propagating (evanescent) waves for K’ 2 (c)[kli + TI’. The 
number of propagating waves is finite and the number of evanescent waves infinite. Such 
a layer transmits and reflects an incoming wave with wave-vector kl into sets of outgoing 
waves on both sides of the layer. Hence, the planar scattering problem can be separated into 
problems which are characterized by kll. In the Landauer picture this has the consequence 
that the reservoirs supply waves with every kl, from both sides. For one kll the ‘channels’ 
are characterized by the reciprocal lattice vectors T. For a first test of our treatment we use 
kll = 0 (r point approximation). So we can use the common multichannel conductance 
formulas (1). (2) without modification. In the other way the conductance formulas have to 
he modified by replacing the summands in (1) and (2) by averages over the Brillouin zone. 
These two-dimensional k space integrations can be effectively done according to methods 
published by Cunningham and by Chadi and Cohen [9, IO]. 

The r point approximation used in this paper is particularly suitable for larger a, because 
for large a the size of the two-dimensional Brillouin zone is very small. That means there 
is a large number of propagating states (about 20-30 in our models). The position of these 
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reciprocal lattice vectors also depends on energy. They also vary during the energetical 
averaging procedure (see (6)). Despite these arguments we have to check the validity of 
this approximation in further calculations. 

2.2. Extraction of p 

To gather the resistivity of a material, we have to know how the resistance depends on the 
layer thickness 1. If the thickness is large enough, we expect ohmic behaviour, i.e. there 
should be a contribution to the resistance which grows proportional to the layer thickness. 
Hints with respect to the minimal size of the supercell follow both tiom the application 
of the Kubo-Greenwood formula and from DOS calculations. We obtain about 100 atoms 
as the lower limit. Moreover, calculations on supercells with up to 3000 atoms (pure s 
scattering) were performed. It turned out that only a range of small layer thickness has to 
be excluded (see also subsection 4.1). 

The conductivity can be extracted from the slope of the conductance as a function of 
the layer thickness. However we have to take effects into account which are not bulk 
typical. There is an additional contribution to the resistance R, which comes from non- 
ohmic behaviour in the surface region and there are fluctuations too. So we have to fit the 
function . \ - I  

to the conductance dependence on 1 using a least-squares method. So the fit should 
begin after the surface region. In this way we extract the conductivity from the quantum 
mechanically defined fluctuating reflection and transmission probabilities. The result should 
not depend on the geometry of the sample, especially if the supercell edge a is large enough. 

Note that the equations (1) and (2) define the conductance on the energy shell. At 
a finite temperature T $ 0 we have to calculate u(E) for some energies around EF, if 
we want to include the smoothing of the Fermi surface. The weighting procedure which 
calculates a temperature dependent conductivity from on the energy shell contributions is 
taken from the Kubo-Greenwood formula, as 

U = I d E  (-g) u(E). 
0 

For non-interacting particles this relation is true independently of the procedure which gives 
u(E). Today, to our knowledge, no well established energy averaging procedure is available 
which comes from the theory of multichannel conductance formulae. We treat temperature 
effects in the simplest way, including the smoothing of the Fermi surface. That means, we 
calculated u ( E )  of about 40 energy levels for the liquid systems and 20 for the amorphous 
one. 

2.3. The S matrix 

The layer is described by a scattering matrix I or a S matrix S = 7 + P where P is the 
free particle propagator between the layer boundaries [7, 111. The S$ are the elements 
of S and describe the scattering of incident waves of channel t’, direction a’ into outgoing 
waves channel T and direction a (see 4). Hence, S can be subdivided into four blocks, 
which belong to the possible combinations of the indices (Y and a’. 
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The channels i and j in~(3)  have to be replaced by r and r', respectively, and we 
calculate the transmission (Trj and the reflection ( R , )  from the corresponding elements 

Our problem is to calculate S as a function of 1. This can be achieved by means of 
 the transfer mahix'method [12, 131 or by S matrix methods [ l l ,  14, 15, 161. We have 
checked, analytically and numerically [SI, these methods in view of our purposes. It turned 
out that they cannot be used for dense realistic strong d scattering systems. The reason 
is that many evanescent waves contribute to the interplanar multiple scattering, due to the 
small separation between the lattice planes. Therefore the S matrix has to be calculated in 
a common spherical wave based treatment. To solve the problem, we have to calculate the 
incident fields at each scatterer in an angular momentum representation. This is done as in 
E D  calculations 117, 18, 191. The equation system for the incident fields V ~ ( r j )  at the 
reference scatterer at rj in the j th  lattice plane of an N,-scatterer supercell system reads as 

q;,'. 

*p(rj) is the primary field. The structure information is concentrated in the structure 
constants GfL! and GLL, which describe the inter- and intralayer propagation. 

G:L, CC(LIEIL')G$ = CC(L'ILIL)GdZ (8) 
i i 

e' 
(9) G tii) - = iKhi)(Tj - ~ 2 ) )  exp ikli . (T!) - T ~ )  OL 

and 

Equation (9) is calculated in reciprocal space whereas (1 1) is obtained by means of an Ewald 
summation technique [ZO]. The C(LIZIL') = ~ ~ S d n ~ Y t ( ~ ) Y i ( ~ ) Y L , ( ~ )  are the Gaunt 
coefficients. The calculation of the interlayer structure constants takes a significant part of 
the CPU time in numerical calculations. Once we have determined the structure constants. 
we can use them to calculate a scattering matrix in angular momentum representation. In a 
compact formulation we rewrite (7) upon introducing the diagonal matrix 3 which involves 
the partial scattering amplitudes fr(r,) at each atomic site, 

IV) = IYiOC) + GFIY). (12) 
This equation for IQ) can be solved by simple matrix manipulation. To get the amplitude 
of the scattered wave, the vector IV) has to be multiplied by i ~ 3 .  This gives 

IQ=) = i ~ 1 3 - l  - G]-'[Y~"'). (13) 
i K I F 1  - S1-l is the scattering matrix in angular momentum representation. If we use a 
block notation, this matrix reads 

F;] -GI -GI2 ... -GIN,$ 
-GZ1 F-I GI ... -G2N8' 

-GNs' -@"2 _ _ .  F-1 -GI 
)-I (14) 2 -  

................................... 
N,, 

[ p  - 814 = 
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where the blocks G'j describe the interaction between lattice planes i and j while G' 
describes the intralayer coupling. The elements of the G'j and G' blocks are defined in 
(9)-(ll). The inversion of (14) can be performed successively. That means, if we have 
already inverted one block of a matrix we can include the next row and the next column 
of (14) and get the inverse of the new block. The procedure is based on simple matrix 
manipulations. Using this procedure and ordering the scatterers with increasing I ,  we get 
the scattering matrix in angular momentum representation of every number of lattice planes, 
that is for every layer thickness. 

Equation (3) requires a representation in a plane wave basis. This is why we have to 
transform (13) or (14) into this basis. This can simply be done using the matrices 

and 

The matrix A transforms from plane wave amplitudes at reference points (q and rr) on 
both sides of the layer into amplitudes of spherical waves at each scatterer whereas the 
reverse transformation is achieved by B. So the S matrix can be written as 

S = i ~ l 3 1 7 '  - G]-'A+P (17) 
where we used the matrix P,  which describes free propagation between the reference points. 
P is a diagonal matrix with the elements P:F'(rv - T [ )  = 8, .& T, exp iak; . (rr - n) 
where S is the Kronecker symbol. 

3. Input 

3.1. Structure 

The structure models were prepared by H Solbrig with both MC and RMC algorithms, where 
the experimental input data are taken from [21, 22, 231. We examined two liquid TMs (Ni. 
Fe) and two amorphous TM-metalloid glasses (Ni80Pzo, FemBm). In figures 2 and 3 we 
show the experimental pair correlation functions in comparison with the pair correlation 
functions of our models of the Ni and the Ni-P system. The structures are prepared in 
cubic supercells with 60-120 atoms including periodic boundq  conditionst. Especially 
for the small clusters it was not possible to produce very good agreement with experimental 
correlation functions because of the small number of degrees of freedom in such systems. 

Table 1 shows the particle densities, temperatures and the cluster sizes of our input 
structures, together with the experimental references. 

3.2. Scattering phme ships 

For the calculation of the S matrix the scattering amplitudes, fi, of the effective atoms are 
required. The fi are related to the partial phase shifts according to f, = (sinq exp iql/K) 
and depend on the atomic species. Phase shifts were obtained from self-consistent DOS 
calculations employing the same structure models 1241. These calculations work in MS 

t In the resistivity calculations we always carried out calculations on 120-atom clusten. For lhe small clusters 
therefore we fitted W O  clusters together to reach greater layer thickness. 
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d r )  

O.OO 2 4 6 8 10 12 
distancelau 

Figure 2. Comparison of the pair correlation function of one Ni model (120 atoms) with 
experiment. 
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distancefau 
Figure 3. Partial pair correlation in the Ni-P system [of a 100-atom model) in comparison with 
experiment. 

and LMTO formalism and were can'ied~out by Amold. As a starting point this serves 
as a reasonable approximation to the effective atom potential. With that potential a DOS 
calculation is performed fiom which we get new occupation numbers of the atomic states 
and a new approximation to the effective atom potential. This procedure is carried out until 
convergence is reached. Figures 4 and 5 show the total DOS and the phase shifts together 
with the Fermi levels and the resonance energies of the Ni and the NuoPm systems. In all 
systems the Fermi level lies above the d resonances in the upper DOS peak. This is why the 
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DOS at EF is very sensitive to the position of EF.  Hence the transport properties are also 
sensitive to small variations of EF. Close to Ep we have predominant 'tm d scattering. The 
TM s scattering as well as the scattering at the metalloid atoms have medium strengths. The 
TM p scattering is very weak. 

DOS 20 
States 

enma lRY 
Figure 4. Dos of liquid Ni together with the partial phase shifG &-Fermi level: Ex- 
monance energy. 

4. Results 

4.1. Qualitative behaviour 

For a test we applied our method to systems of s scatterers. In such a case one can 
calculate the S matrix upon adding successively lattice planes in plane wave representation 
(see above). This has the advantage that we can stack together very many lattice planes. 
The CPU time is proportional to the layer thickness 1 and the memory demand is independent 
of that thickness. For this check we employed clusters of liquid TMS. The s phase shifts 
were changed to simulate weak or strong scattering and the other phase shifts were set equal 
to zero. We investigated cubic supercells of 60-300 atoms. 

To reach greater layer thickness, long basic cells with up to 3000 atoms were prepared 
upon stacking slightly modified cubical cells. It tumed out that trends towards periodicity in 
the third direction have significant influence on the transmission through the layer, especially 
for weak scattering. If we wanted to do quantitative calculations on weak-scattering systems, 
we had to improve the structures in doing MC or RMC procedures on such long basic cells 
to prevent periodicity in the third dimension. On the other hand such weak-scattering 
systems, according to our method, need larger basic areas of the two-dimensional supercells 
to guarantee that the mean free path is smaller than the cell dimensions. So the model should 
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7r - , , , . , , 

0.2 0.4 0.6 0.8 1.0 

1551 

energy/Ry 
Figure 5. DOS and partial phase shifs of amorphous NimPx); EF-Fermi level; En-resonance 
level. 

Table 1. Data of our I 1  model SVUCIURS. 

Supercell Layer Panicle 
Atom edge gickness Temperature density Exp. 

Material number (au) (SU) (K) ( a ~ - ~ )  data 
~~ ~ ~~ 

Ni 60 17.22 35.44 1773 0.011736 [21] 
80 18.96 27.50 
80 18.96 27.95 

120 21.70 21.70 
Fe 60 I750 35.04 1833 0.011202 [21] 

80 19.26 28.57 
120 22.04 22.04 

NiaIPzo 100 19.65 23.81 300 ' ,0.013180 [22] 
120 20.88 20.88 

FemIB2" LOO 19.22 22.70 300 0.014077 [23] 
120 20.43 20.43 

not be used for quantitative resistivity calculations in weak-scattering systems. Here we only 
check the accuracy of the S matrix calculation. Figure 6 shows the resistance according to (1) 
and (2) multiplied by the area of the two-dimensional basic cell. Note that different-results 
for the absolute value of resistance are obtained depending on the employed formula. But 
the first derivative is nearly the same after the first layerst. This is also true if we compare 
different clusters. Figure ,6 shows calculations for the smallest (60 atoms) and the largest 
(300 atoms) one. The qualitative behaviour is nearly the same for different choices of 60. 

formulas [7]. 
f ,This behaviour can be explained by the model which underlies the derivation of the different conductance 

, .  
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4.2. Application to realistic materials 

If we want to treat realistic strongly scattering 3d TM systems with this method, we have to 
circumvent one problem: we cannot use methods that calculate the S matrix successively 
from plane wave S matrices. It must be calculated in the angular momentum representation 
(see section 2). We are numerically limited to cluster sizes of about sz IO' atoms. In the 
following, all calculations will be performed with 120-atom samples (see table I). 

l o L L c I d  '0 20 40 60 80 100 

layer thickness 1 f au 
Figure 6. Resistance (defined an energy shell) as P function of layer thickness multiplied by the 
m n  of the two-dimensional basic cell for a layer build up from 60-atom clusters and 300-atom 
clusters (o o 0) in arbitrary units. 

Table 2. Comparison of calculated resistivities of the model simctures from table I with other 
theoretical and with experimenwl results. 

Ni 60 
80 

105 f 6 
95f8 

110*5 
IO5 f 5 
IO7 f 6 
100 z t  4 
112*4 

l l O f 6  
IO7 * 8 
1 2 5 1  12 
l23b IO 

107f  10 104 80 [25]. 170 1261 83 [U].  85 [28] 
102f9 
1 1 o i 1 2  
103 f 9 

104f 12 106 127 1261. 180 I251 136 [U]. 137.6 [29] 
115f 10 
116f  13 
111i12 109 130 [30] 112 [31]. 130 1321 
105 i 15 132 [33l 
125f 15 124 119 [34]. 140 [35] 
l Z 4 f  I3 

In order to demonstmte how resistance depends on the layer thickness, we present 
two examples in figures 7 (liquid Ni at 1773 K) and 8 (amorphous NigoPzo at 300K) at 
E = EF.  The most important contribution to o ( E )  arises from the Fermi energy because 
the first derivative of the Fermi distribution (-df/dE) has its maximum at EF. Besides the 
function R(I)  we show the linear fit to R(I ) .  Obviously, the slope strongly depends on the 
region where the fit is done. If we exclude the starting region with great deviations from 
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ohmic behaviour, we get variations of the order of 10% in u(E) and in U, too. We have 
systematically varied the fitting region. The results are shown in table 2 together with the 
resistivities pcalc(E~)  where only the contribution of the Fermi energy is considered. 

60.0 

R(E) 40.0 

O.OO 5 10 15 20 25- ~ ~ 3 0  
layer thickness E /au 

Figure 7. Liquid Ni at 1773 K. Resistance as a function of layer thickness in arbiuary units. 
At every energy there are large fluctuations. The 61 region was 12-27 au. 

layer thickness E lau 
Figure 8. Amorphous Ni8oPx) ar 300 K. Resistance as a function of layer thickness in arbiuary 
units. The fluctuations are smaller than i i t h e  liquid system. The fit region was 12-23 au. 

No systematic correlations of pcalc with the atom number of the basic cluster were found 
in our calculations. This means that our supercells are already large enough. However, 
many more calculations at various scattering strengths are required in order to confirm this 
conclusion. 

If we compare our averaged values P,,l, for every material with well established 
theoretical and experimental results, we find a very good agreement for the amorphous 
systems and a poorer agreement for the liquids. The theoretical results in the literature are 
altogether based on the evaluation of the Kubo4reenwood formula [5].  Bose et al 1261 
did his calculations in a TB-LMTO formalism and achieved good results except for liquid Ni. 
The results of Asano and Yonezawa [25] are very satisfactory, too. Asano and Yonezawa as 
well as Yang et aE [30] have applied a KKR method for calculating the Green function. Our 
calculated resistivity of liquid Ni is too high. This effect we can also see in the value given 
by Bose et al 1261. One reason could be the problems of. using the density functional theory 
to treat this material. Another reason may be the large fluctuations of &hm(l) discussed 
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later in this section. They could also be responsible for the deviations in the pmte value of 
liquid Fe. If we look at our results for the liquids we find deviations from experimental 
values of the order of 20-30%. Besides the arguments discussed above we have to mention 
that our method does not include inelastic scattering events which can play an important role 
at high temperaturest. Additionally our results are influenced by the r point approximation. 
Our best results were obtained for the amorphous materialst. Our calculated values show 
deviations from the experimental values of the order 1C-20%. 

The behaviour of Rohm(l) is significantly different for  the^ liquid and the amorphous 
materials. For the liquids, this function shows greater fluctuations. The reason could be 
the larger variation of next-nearest-neighbour distances, especially the possibility of small 
distances which are the underlying cause of extremely strong multiple scattering. It may be 
that local self-consistency for the phase shifts is required in such cases§. 

We believe that the proposed method is preferably applicable to highly resistive metallic 
systems11 with a& x Zf << U .  For weakly scattering materials it is difficult to guarantee 
U > rr. 

5. Conclusions 

In the Landauermiittiker approach the resistance of an ensemble of scatterers is derived 
from its transmission and reflection. This approach is commonly used to describe quantum 
transport phenomena. We have demonstrated that material properties like the resistivity 
can be obtained by this method, too. Our model system is periodic in two dimensions 
which gives rise to the definition of the channels. We deal with the influence of disorder 
in the third direction which is the transport direction. As a fist approximation we confine 
ourselves to kll = 0 (r point). This approximation should be valid for large supercells. 

The Landauer (1) and the Biittiker (2) formula differ from one another in that the latter 
one includes the resistance between the ideal leads and the reservoirs [7]. This is a constant 
part of the total resistance, ROh,. In this respect our results are very satisfying. 

To obtain the resistivity we (i) calculate the fluctuating resistance as a function of the 
layer thickness and (ii) extract then the resistivity by linear regression. This linear fit of 
Rohm as a function of the layer thickness gives nearly the same results for both formulas 
(1) and (2) .  The values of Rp are different for both formulas, of course. These facts give 
rise to the essential statement that the resistivities obtained are almost independent of the 
employed formula. 

The temperature is treated as in the Kubo-Greenwood formula (6) including the 
smoothing of the Fermi surface. Greenwood [5] has shown that (6) is true for non-interacting 
particles. 

To test our method we calculated resistivities of realistic systems. Therefore we used 
realistic structurr models which reproduce the experimental pair correlation functions and 
scattering properties which are defined self-consistently from the same structure model. The 
ROhm(l) curves for the liquid systems show larger fluctuations than those for the amorphous 
systems. This causes larger variations of o(E) if the fitting region is moved. In forthcoming 

These effects are also neglected in the other thmretial results cited here. 
I: The experimentd values of p from these materials fluctuate. because the samples are thin films. Their properties 
depend on the manufacturing conditions. 
5 Our phase shifts come from self-consistently defined effective atoms (see above). 
I/ We have already done calculations for liquid Ba a( 1024 K and got a value of about 240 p61 cm while the 
experimrnwl value is 306 pC2 em. 
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extensions our method should be able to treat thicker layerst and use local self-consistently 
defined scattering properties. Our hope is that we can minimize the fluctuations in this way. 

Our results reproduce experimental data within 10-30% for all systems. Note that this 
is the first application of this method to a problem which is usually treated by the Kubo 
formalism. The merit of our method is that it is based on simple equations that include 
transmission and reflection probabilities. The resistivity is calculated in a very appealing 
physical picture analogous to the macroscopic meaning of resistance and resistivity. 

Altogether we have shown that it is possible to use treatments established for the 
description of mesoscopic systems to calculate resistivities of strongly scattering systems. 
The present version includes full multiple scattering, based on a kind of mathematics 
which is common in LEED calculations. Further extensions should include , Brillouin 
zone integrations, locally self-consistent calculations of scattering phase shifts as well as 
layered KKR techniques to treat thicker layers. Our hope is, that we could bring different 
developments in modern physics closer together. Future work will show wether our method 
is able to give as good results as known from applications of the Kubo-Greenwood formula. 
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