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Abstract. Employing the concept of elastic multiple scattering, we used the Landaver/Biittiker
conductance formulas for calculating resistivities of realistic structural models of strongly
scattering disordered materials. Qur model is based on the calculation of scattering matrices
of supercells with about one hundred atoms which are arranged into a two-dimensional layer.
Resistivities are obtained upon extracting the average linear dependence of the transmission
on the layer thickness. The smoothing of the Fermi surface is included just as in the Kubo-
Greenwood formula. We applied our method in resistivity calculations of liquid and amorphous
transition metals.

1. Introduction

For many years there has been increasing interest in the theoretical description of the
properties of liquid and amorphous transition metals (TMs). Today there exist several
theoretical approaches for calculating electronic properties which are the foundations for an
improved understanding of this kind of material. In recent years, first-principles calculations
of the density of states (DOS) have been performed. These calculations are based on LKKR,
LCAQ, LMTO and multiple-scattering {MS) schemes and have to work self-consistently. Today
systems of =102 atoms can be treated in that way and the results are nearly independent
of the employed approach. The starting point for all these calculations is structure models.
These models are generated by molecular dynamical (MD} or Monte Carlo (MC) procedures.
Much progress has been made in treating the particle interactions quantum mechanically.
Unfortunately, such advanced techniques which are based on plane wave basis sets [1]
cannot be used because of the resonant d states. But H—NFE-TB derived effective pair
potentials work quite reasonably [2, 3]. Systems with many more than onehundred atoms
have to be simulated by use of effective potentials. Alternatively, reverse Monte Carlo
(RMC) procedures [4] can be used. The generated structure models are characterized by
nearly the same statistical properties as structures that come from MD or MC schemes.

The special subject of our work is the DC conductivity or resistivity of these materials.
Most formalisms for calculating these quantities only work for weakly scattering materials
{mean free path {f much greater than the interatomic distance dar_a) or dilute alloys. The
most popular generalization is the extended Ziman formula. This approach does not work
very well for amorphous and liquid T™s. Improved results were obtained upon employing
effective valences. We believe that such approaches are not consistent, because DOS
calculations also need a complete MS treatment to produce correct resuits. Until now,
only the approaches within the linear response theory (e.g. the Kubo—Greenwood formula
[5]} are able to reproduce experimental results with a good accuracy.
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Otherwise, methods for calculating the resistance of mesoscopic systems are under
discussion. Aa early as 1957 the basic ideas for such calculations were published by
Landauer [6]. He calculated the conductance of a one-dimensional scatterer between ideal
one-channel leads as a function of its reflection (R) and transmission (T) coefficients
as G = (2¢*/R)T/R. This is known as the one-channel Landauer formula. In
connection with the explanation of quantum effects in mesoscopic systems, like conductance
quantization, universal conductance fluctuations, Aharonov—-Bohm effect and others this
Landauer picture had a big revival. An alternative treatment of the same problem led to
another one-dimensional conductance formula, the so called one-channel Biittiker formula
G = (2¢*/h)T. Until now in a certain experimental situation, it has not been clear which
formula has to be used. Furthermore, there were developed different formulas for the
situation of many-channel leads, e.g. the many-channel Landaver [7] formula,

=-2-£—2-(ZT 22&)/(2%(14&;—1?)) 1)

and the multichannel Biittiker formula
2e?

=5 LT @
T
as generalizations of the one-channel cases, Here T; (R;) are the total transmission
{(reflection) probabilitics into the ith channel. They can be calculated from the § matrix
according to

L= IS5P Re=3_I570F 3
7 J

Biittiker et al [7] have shown that (1) is the conductance of the scatterer alone, while (2)
includes contributions of the ideaf leads, too. Nevertheless, (2) is often used to calculate
the conductances of a bare scatterer. As yet there is some lack of knowledge of how
the above conductance formulas have to be applicated. This work will not attempt to
answer this question. Qur goal is rather to use such conductance formulas for calculating
the conductivity/resistivity of realistic strongly scattering materials. Therefore, a model of
an infinite disordered system is needed which can be used in multichannel conductance
formulas like (1), (2).

One way to proceed may be to put a realistic cluster model into a confinement, e.g. a
tube, However, in this model a large part of the scatterers is situated near the wall. The
properties of these scatterers are influenced by the wall, leading to deviations from bulk
properties.

Another way, the application of periodic boundary conditions in two dimensions, has
the advantage that many more scatterers are situated in typical butk surroundings. So we
have to treat the transport perpendicular to a two-dimensionally periodic slab which is not
periodic in the third dimension. The two-dimensional basic cell has the dimensions aa and
the layer has a thickness [ with [ =~ I...2q. The siteation is shown in figure 1. Upon
adding periodicity in the third direction one gets a resistivity of zero or infinty depending
on the band structure E(k) of the supercrystal. Our model should be better, the smaller
the mean free path is. In 3d T™ systems /y =~ oz holds. Especially the case a 3 dy—y
should simulate a bulk material.

This paper demonstrates the method for calculating the resistivity with the help of such
multichannel conductance formulae. The formalism is shown in detail in [8].

In section 2 we give the basic equations for calculating the 5 matrix in a MS picture. The
structure models and the scattering phase shifts as input of our calculations are discussed in
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Figure 1. Two-dimensional periodic layer with a periodicity a and a thickness I. An incident
plane wave is scattered into outgoing waves differing by vectors of the two-dimensional
reciprocal lattice, We are interested in the transport perpendicular to this layer.

section 3. Then we show some curves which demonstrate the behaviour of our model and
apply it to realistic materials. At the end we give a short discussion.

2. Theory

2.1. Basic model

The electron scattering at a two-dimensional periodic fayer can be treated in a plane wave
basis. The plane waves

i . -
\/K_explk‘:-r ki =ky+1+€0K ke = /K2 = (ky +1)?

T

@
are characterized by the energy |«|? and by the wave vector k; which is confined to the first
Brillouin zone of the two-dimensional reciprocal lattice (lattice vectors t). (4) shows that
there exist two kinds of wave: propagating (evanescent) waves for x? > (<)[ky +7]?. The
number of propagating waves is finite and the number of evanescent waves infinite. Such
a layer transmits and reflects an incoming wave with wave-vector k) into sets of outgoing
waves on both sides of the layer. Hence, the planar scattering problem can be separated into
problems which are characterized by k;. In the Landauer picture this has the consequence
that the reservoirs supply waves with every ky from both sides. For one kj the ‘channels’
are characterized by the reciprocal lattice vectors t. For a first test of our treatment we use
k) = 0 (I point approximation). So we can use the common multichannel conductance
formulas (1), (2) without modification. In the other way the conductance formulas have to
be modified by replacing the summands in (1) and (2} by averages over the Brillouin zone.
These two-dimensional k space integrations can be effectively done according to methods

published by Cunningham and by Chadi and Cohen [9, 10].
The T point approximation used in this paper is particularly suitable for larger a, because
for large a the size of the two-dimensional Brillouin zone is very small. That means there
is a large number of propagating states (about 20-30 in our models). The position of these

qu(E, k“, 7‘) =
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reciprocal lattice vectors also depends on energy. They also vary during the energetical
averaging procedure (see (6)). Despite these arguments we have to check the validity of
this approximation in further calculations.

2.2. Extraction of p

To gather the resistivity of a material, we have to know how the resistance depends on the
layer thickness !. If the thickness is large enough, we expect ohmic behaviour, i.e. there
should be a contribution to the resistance which grows proportional to the layer thickness.
Hints with respect to the minimal size of the supercell follow both from the application
of the Kubo—Greenwood formula and from DOS calculations. We obtain about 100 atoms
as the lower limit. Moreover, calculations on supercells with up to 3000 atoms (pure s
scattering) were performed. It turned out that only a range of small layer thickness has to
be excluded (see also subsection 4.1).

The conductivity can be extracted from the slope of the conductance as a function of
the layer thickness. However we have to take effects into account which are not bulk
typical. There is an additional contribution to the resistance Rp which comes from non-
ohmic behaviour in the surface region and there are fluciuations too. So we have to fit the
function

1 -1
Gomm(E) = (Rp(E) + m) (5)
to the conductance dependence on [ using a least-squares method. So the fit should
begin after the surface region. In this way we extract the conductivity from the quantum
mechanically defined fluctuating reflection and transmission probabilities. The result should
not depend on the geometry of the sample, especially if the supercell edge a is large enough.

Note that the equations (1) and (2) define the conductance on the energy shell. At
a finite temperature T = 0 we have to calculate o (E) for some energies around Ep, if
we want to include the smoothing of the Fermi surface. The weighting procedure which
calculates a temperature dependent conductivity from on the energy shell contributions is
taken from the Kubo-Greenwood formula, as

a =[dE( —:—é—) o(E). ()]
0

For non-interacting particles this relation is true independently of the procedure which gives
o (E}. Today, to our knowledge, no well established energy averaging procedure is available
which comes from the theory of multichannel conductance formulae. We treat temperature
effects in the simplest way, including the smoothing of the Fermi surface. That means, we
calculated o (E) of about 40 energy levels for the liquid systems and 20 for the amorphous
one.

2.3, The S matrix

The layer is described by a scattering matrix 7 or a § matrix § = 7 + P where P is the
free particle propagator between the layer boundaries [7, 11]. The Sg‘f,’ are the elements
of & and describe the scattering of incident waves of channel 7/, direction ¢’ into outgoing
waves channel T and direction « (see 4). Hence, S can be subdivided into four blocks,

which belong to the possible combinations of the indices o and o'.
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The channels i and j in (3) have to be replaced by 7 and t’, respectively, and we
calculate the transmission (T,) and the reflection (R.) from the correspondmg elements
s,

n Our probiem 1§ to calculate & as a function of I. This can be achieved by means of
the transfer matrix method [12, 13] or by S matrix methods [11, 14, 15, 16]. We have
checked, analytically and numerically [8], these methods in view of our purposes. It turned
out that they cannot be used for dense realistic strong d scattering systems. The reason
is that many evanescent waves contribute to the interplanar multiple scattering, due to the
small separation between the lattice planes. Therefore the S matrix has to be calculated in
a common spherical wave based treatment. To solve the problem, we have to calculate the
incident fields at each scatterer in an angular momentum representation. This is done as in
LEED calculations [17, 18, 19]. The equation system for the incident fields ¥, (ry) at the
reference scatterer at ; in the jth lattice plane of an N,-scatterer supercell system reads as

Wi (ry) = WI(r;) + Z Fr(r) Gl Vo (ry) + Z 3 Ferd Gy Y (o). M

i9f L
Wi (.} is the primary field. The structure information is concentrated in the structure
constants G%’,’} and G, which describe the inter- and intralayer propagation.

Gru = ZC(uLiL)G” chliiL)G{;;g ®)
G(’”) leh(”(r_., - r(‘)) expiky - (r® —1ry) 9
ltJ
and ]
=) CALILILYG, = > CWILILGy; (10)
L L
Gy = Y ih$Piry — v expliky - v — ). an
it

Equation (9) is calculated in reciprocal space whereas (11) is obtained by means of an Ewald
summation technique [20]. The C(LIL|L') = v4r f dS% ¥} (€)Y (@)Y () are the Gaunt
coefficients. The calculation of the interlayer structure constants takes a significant part of
the CPU time in numerical calculations. Once we have determined the structure constants,
we can use them to calculaté a scattering matrix in angular momentum representation. In a
compact formulation we rewrite {7) upon introducing the diagonal matrix F which involves
the partial scattering amplitudes f;(r,} at each atomic site,

|y = (W) 4 GFW). (12)

This equation for |¥) can be solved by simple matrix manipulation. To get the amplitude
of the scattered wave, the vector |¥) has to be multiplied by ik F. This gives

[0y = i [F~ — G ) (13)
iKk{F 1 — @) is the scattering matrix in angular momentum representation. If we use a

block notation, this matrix reads

Fl—l -G __G12 —G]N“‘ -1

_GZI FEI -G .- __GZN_“

F'-agI"'= (14)
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where the blocks G describe the interaction between lattice planes i and j while G’
describes the intralayer coupling. The elements of the G and G’ blocks are defined in
(9)—(11). The inversion of (14) can be performed successively. That means, if we have
already inverted one block of a matrix we can include the next row and the next column
of (14) and get the inverse of the new block. The procedure is based on simple matrix
manipulations. Using this procedure and ordering the scatterers with increasing [, we get
the scattering matrix in angular momentum representation of every number of lattice planes,
that is for every layer thickness. ‘

Equation (3) requires a representation in a plane wave basis. This is why we have to
transform (13) or (14} into this basis. This can simply be done using the matrices

{A}Lj = \/1_‘\/27?(—1)"‘ { exp 1’6: . ('-"'J —TE)Y_L(ki) o=+ (15)

e expikl - (rj — rr)Y_L(k}) o =—
and
2w expiky - (ry — ri) Yo (KF) o=+
B aLi = T 4 i "r 16
(Bhraz KK A {em%j@wﬂﬂ&mﬁ a=—- 19

The matrix 4 transforms from plane wave amplitudes at reference points (r; and »,) on
both sides of the layer into amplitudes of spherical waves at each scatterer whereas the
reverse transformation is achieved by B, So the S matrix can be written as

S=uB[F -Gl A+P a7

where we used the matrix P, which describes free propagation between the reference points,
P is a diagoral matrix with the elements ’Pg‘ﬁ'(r,. — 1) = Sqoude r eXpick? - (e — 1)
where & is the Kronecker symbol.

3. Input

3.1. Structure

The structure models were prepared by H Solbrig with both MC and RMC algorithms, where
the experimental input data are taken from [21, 22, 23], We examined two lignid T™Ms (Ni,
Fe) and two amorphous TM—metalloid glasses (NiggPag, FegoBag). In figures 2 and 3 we
show the experimental pair correlation functions in comparison with the pair correlation
functions of our models of the Ni and the Ni-P system. The structures are prepared in
cubic supercells with 60-120 atoms including periodic boundary conditionsf. Especially
for the small clusters it was not possible to produce very good agreement with experimental
correlation functions because of the small number of degrees of freedom in such systems.

Table 1 shows the particle densities, temperatures and the cluster sizes of our input
structures, together with the experimental references.

3.2, Scattering phase shifts

For the calculation of the § matrix the scattering amplitudes, f;, of the effective atoms are
required. The f; are related to the partial phase shifts ny according to f; = (sinmy exp in /&)
and depend on the atomic species. Phase shifts were obtained from self-consistent DOS
calculations employing the same structure models [24]. These calculations work in MS

1 In the resistivity calculations we always carried out calculations on 120-atom clusters. For the small clusters
therefore we fitted two clusters together to reach greater layer thickness,
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Figure 2. Comparison of the pair correlation function of one Ni model (120 atoms) with
experiment.
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Figure 3. Partial pair correlation in the Ni~P system (of a 10{)-atom model) in comparison with
experiment. -

and LMTO formalism and were carried out by Amnold. As a starting point this serves
as a reasonable approximation to the effective atom potential. With that potential a DOS
calculation is performed from which we get new occupation numbers of the atomic states
and a new approximation to the effective atom potential. This procedure is carried out until
convergence is reached. Figures 4 and 5 show the total DOS and the phase shifts together
with the Fermi levels and the resonance energies of the Ni and the NigoPap systems. In all
systems the Fermi level lies above the d resonances in the upper DOS peak. This is why the
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DOS at Ep is very sensitive to the position of Er. Hence the transport properties are also
sensitive to small variations of Eg. Close to Er we have predominant T™ d scattering. The
TM s scattering as well as the scattering at the metalloid atoms have medivm strengths. The
T™ p scattering is very weak,

40 T T 1 i T T T T T

30

DOS 20
States

Ry atomig

m

Figure 4. Dos of liquid Ni together with the partial phase shifts; Ep—Fermi level; Ep—
resonance energy.

4. Results

4.1. Qualitative behaviour

For a test we applied our method to systems of s scatterers. In such a case one can
calculate the S matrix upon adding successively lattice planes in plane wave representation
(see above). This has the advantage that we can stack together very many lattice planes.
The CPU time is proportional to the layer thickness [ and the memory demand is independent
of that thickness. For this check we employed clusters of liquid TMs. The s phase shifts
were changed to simulate weak or strong scattering and the other phase shifts wers set equal
to zero. We investigated cubic supercells of 60-300 atoms.

To reach greater layer thickness, long basic cells with up to 3000 atoms were prepared
upon stacking slightly modified cubical cells. It turned out that trends towards periodicity in
the third direction have significant influence on the transmission through the layer, especially
for weak scattering. If we wanted to do quantitative calculations on weak-scattering systems,
we had to improve the structures in doing MC or RMC procedures on such long basic cells
to prevent periodicity in the third dimension. On the other hand such weak-scattering
systems, according to our method, need larger basic areas of the two-dimensional supercells
to guarantee that the mean free path is smaller than the cell dimensions. So the model should
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Table 1. Data of our 11 model structures.
Supercell  Layer Particle
Atom edge thickness  Temperature  density Exp.
Material pumber  (an) (au) (X) {au data
Ni 60 17.22 35.44 1773 0011736 [21]
80 18.96 27.50 -
80 18.95 27.95
120 2170 21.70
Fe 60 £7.50 35.00 1833 0.011202  {21]
80 19.26 28.57
120 22,04 22.04 .
NigoPay 100 19.65 2381 300 0013180 [22]
120 20.88 20.88 -
FegaBap 100 19.22 22,70 300 _0.014077 (23}
120 2043 20.43

not be used for quantitative resistivity calculations in weak-scattering systems. Here we only
check the accuracy of the S matrix calculation. Figure 6 shows the resistance according to (1)
and (2} muitiplied by the area of the two-dimensional basic cell. Note that different results
for the absolute value of resistance are obtained depending on the employed formuila. But
the first derivative is nearly the same after the first layerst. This is also true if we compare
different clusters. Figure 6 shows calculations for the smallest (60 atoms) and the largest
(300 atoms) one. The qualitative behaviour is nearly the same for different choices of &.

T This behaviour can be explained by the model which undedies the derivation of the different conductance

formulas [7].
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4.2. Application to realistic materials

If we want to treat realistic strongly scattering 3d T™M systems with this method, we have to
circumvent one problem: we cannot use methods that calculate the S matrix successively
from plane wave S matrices. It must be calculated in the angular momentum representation
(see section 2). We are pumerically limited to cluster sizes of about & 10? atoms. In the
following, all calculations will be performed with 120-atom sampies (see table 1).

50 T T T T —
vl

40 mse

pg("w%w v
lnvw;f“'
30 ......... Bittiker 1
R(DA ¥ Landauer
20F 4
arb.units
10-
=20 40 60 80 100

layer thickness ! /au
Figure 6. Resistance (defined on energy shell) as a function of layer thickness multiplied by the
area of the two-dimensional basic cell for a layer build up from 60-atom clusters and 300-atom
clusters (o o o) in arbitrary vnits.

Table 2. Compartson of calculated resistivities of the model structures from table 1 with other
theoretical and with experimental results.

Atom

Peaje Peate(ER) Buale PRuabuy Pexp
Material aumber (£eS2 cm} (1 cm) {12 em) (2282 cm) (12 cm)
Ni 60 105+6 07410 104 80 [25], 170 [26] 83 [27], 85 [28)
80 95+ 8 02+9
80 1HokS5 110412
120 1055 039 - -
Fe 60 107+6 044+12 106 127 [26], 180 [25] 136 [27], 137.6 [29]
80 10044 115+ 10
120 1124 il6 £ 13
NigyP2o 160 11046 111£12 102 130 [30] 112 [31], 130 [32]
120 1078 1054 15 132 {33]
FegnBag 100 125 & 12 1254+ 15 124 119 [34], 140 [35]
120 123+ 10 124+ 13

In order to demonstrate how resistance depends on the Jayer thickness, we present

two examples in figures 7 (liquid Ni at 1773 K) and 8 (amorphous NiggPy at 300K) at
E = Er. The most important contribution to o (E) arises from the Fermi energy because
the first derivative of the Fermi distribution (—d f/dE) has its maximum at Er. Besides the
function R{{} we show the linear fit to R([). Obviously, the slope strongly depends on the
region where the fit is done. If we exclude the starting region with great deviations from
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obmic behaviour, we get variations of the order of 10% in o(E) and in o, too. We have
systematically varied the fitting region. The results are shown in table 2 together with the
resistivities peac(Er) where only the contribution of the Fermi energy is considered.

80-0 T T 1 T T3

— Landauer - . ,,..,«9"’"'?(/:
60.01 = AR
R(1) 40.0} ]
arb.units
20,0 ]
0.0

layer thickmess ! fau

Figure 7. Liquid Ni at 1773 K. Resistance as a function of layer thickness in arbitrary units.
At every energy there are large fluctuations. The fit region was 12-27 au.

80-0 - T ] 1 T - T
— Landauer e
8007 __ Battiker ]
R(l) 40.0 i
arb.units g
20.0¢7 .
0.0

layer thickness ! fau

Figure 8. Amorphous NigyPyy at 300 K. Resistance as a function of layer thickness in arbitrary
units. The fuctuations are smaller than in the liguid system. The fit region was 12-23 an,

No systematic correlations of peqc with the atom number of the basic cluster were found
in our calculations. This means that our supercells are already large enough. However,
many more calculations at various scattering strengths are required in order to confirm this
conclusion. :

If we compare our averaged values pe; for every material with well established
theoreticai and experimental resuits, we find a very good agreement for the amorphous
systems and a poorer agreement for the liquids. The theoretical results in the literature are
altogether based on the evaluation of the Kubo—Greenwood formula [S5]. Bose et af [26]
did his calculations in a TB—LMTO formalism and achieved good results except for liquid Ni.
The results of Asano and Yonezawa [25] are very satisfactory, too. Asano and Yonezawa as
well as Yang et al [30] have applied a KKR method for calculating the Green function. QOur
calculated resistivity of Hiquid Ni is too high. This effect we can also see in the value given
by Bose ez al [26]. One reason could be the problems of using the density functional theory
to treat this material. Another reason may be the large fluctuations of Ronm(f) discussed
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later in this section. They could also be responsible for the deviations in the peye value of
liquid Fe. If we look at our results for the liquids we find deviations from experimental
values of the order of 20-30%. Besides the arguments discussed above we have to mention
that our method does not include inelastic scattering events which can play an important role
at high temperaturest. Additionally our results are influenced by the I point approximation,
Our best results were obtained for the amorphous materialsf. Our calculated values show
deviations from the experimental values of the order 10-20%.

The behaviour of Ropm(l) is significantly different for the liquid and the amorphous
materials. For the liquids, this function shows greater fluctuations. The reason could be
the larger variation of next-nearest-neighbour distances, especially the possibility of small
distances which are the underlying cause of extremely strong multiple scattering. It may be
that local self-consistency for the phase shifts is required in such cases§.

‘We believe that the proposed method is preferably applicable to highly resistive metallic
systems|] with dy—x & Ir € a. For weakly scattering materials it is difficult to guarantee
a>

3. Conclusions

In the Landauer/Biittiker approach the resistance of an ensemble of scatterers is derived
from its transmission and reflection. This approach is commonly used to describe guantum
transport phenomena. We have demonstrated thai material properties like the resistivity
can be obtained by this method, too. Our model system is periodic in two dimensions
which gives rise to the definition of the channels. We deal with the influence of disorder
in the third direction which is the transport direction. As a first approximation we confine
ourselves to kj = 0 (I point). This approximation should be valid for large supercells.

The Landauer (1) and the Biittiker {2) formula differ from one another in that the latter
one includes the resistance between the ideal leads and the reservoirs [7]. This is a constant
part of the total resistance, Ronm. In this respect our results are very satisfying.

To obtain the resistivity we (i) calculate the fluctuating resistance as a function of the
layer thickness and (ii) extract then the resistivity by linear regression. This linear fit of
Rowm a5 a function of the layer thickness gives nearly the same results for both formulas
(1} and (2). The values of R, are different for both formulas, of course. These facts give
rise to the essential statement that the resistivities obtained are almost independent of the
employed formuia.

The temperature is treated as in the Kubo-Greenwood formula (6) including the
smoothing of the Fermi surface. Greenwood [5] has shown that (6) is true for non-interacting
particles.

To test our method we calculated resistivities of realistic systems. Therefore we used
realistic structur. models which reproduce the experimental pair correlation functions and
scattering properties which are defined self-consistently from the same structure mode]. The
Ronm(!) curves for the liquid systems show larger fluctuations than those for the amorphous
systemns. This causes larger variations of o (E} if the fitting region is moved. In forthcoming

1 These effects are also neglected in the other theoretical results cited here,

t The experimental values of p from these materials fluctuate, because the samples are thin films. Their properties
depend on the manufacturing conditions.

§ Our phase shifts come from self-consistently defined effective atoms (see above).

[ We have already done calculations for liquid Ba at 1024 K and got a value of about 240 xR cm while the
experimental valoe is 306 p$2 cm.
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extensions our method should be able to treat thicker layerst and use local self-consistently
defined scattering properties. Our hope is that we can minimize the fluctuations in this way.
Our results reproduce experimental data within 10-30% for all systems. Note that this
is the first application of this method to a problem which is usually treated by the Kubo
formalism. The merit of our method is that it is based on simple equations that include
transmission and reflection probabilities. The resistivity is calculated in a very appealing
physical picture analogous to the macroscopic meaning of resistance and resistivity.
Altogether we have shown that it is possible to use treatments established for the
description of mesoscopic systems to calculate resistivities of strongly scattering systems.
The present version includes full multiple scattering, based on a kind of mathematics
which is common in LEED calculations. Further extensions should include Brillouin
zone integrations, locally self-consistent calculations of scattering phase shifts as well as
layered KKR techniques to treat thicker layers. Ouwr hope is, that we could bring different
developments in modern physics closer together. Future work will show wether our method
is able to give as good results as known from applications of the Kubo~Greenwood formula.
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